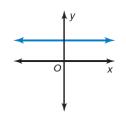
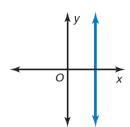
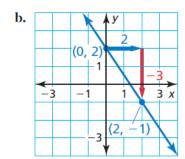

3.4 Graphing Linear Equations in Slope-Intercept Form


Essential Question:


The _____ m of a non-vertical line passing through two points (x_1, y_1) and (x_2, y_2) is the ratio of the ____ (change in y) to the $___$ (change in x).

Positive slope Negative slope Slope of 0 Undefined slope





EXAMPLE 1 Finding the Slope of a Line

Describe the slope of each line. Then find the slope.

The points represented by each table lie on a line. How can you find the slope of each line from the table? What is the slope of each line?

a.

X	У	
4	20	
7	14	
10	8	
13	2	

У
2
2
2
2

X	у
-3	-3
-3	0
-3	6
-3	9

A linear equation written in the form y = mx + b is in the _____ form. The slope of the line is ____, and the yintercept of the line is _____.

EXAMPLE 3 Identifying Slopes and *y*-Intercepts

Find the slope and the y-intercept of the graph of each linear equation.

a.
$$y = 3x - 4$$

b.
$$y = 6.5$$

a.
$$y = 3x - 4$$
 b. $y = 6.5$ **c.** $-5x - y = -2$

EXAMPLE 4 Using Slope-Intercept Form to Graph

Graph 2x + y = 2. Identify the *x*-intercept.