3.4 Graphing Linear Equations in Slope-Intercept Form

Essential Question:

The \qquad m of a non-vertical line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the ratio of the ___ (change in y) to the \qquad (change in x).

Positive slope

Negative slope

Slope of 0

Undefined slope

EXAMPLE 1 Finding the Slope of a Line

Describe the slope of each line. Then find the slope.
a.

b.

The points represented by each table lie on a line. How can you find the slope of each line from the table? What is the slope of each line?
a.

x	y
4	20
7	14
10	8
13	2

b.

x	y
-1	2
1	2
3	2
5	2

c.

x	y
-3	-3
-3	0
-3	6
-3	9

A linear equation written in the form $y=m x+b$ is in the form. The slope of the line is ____, and the y intercept of the line is \qquad .

EXAMPLE 3 Identifying Slopes and y-Intercepts

Find the slope and the y-intercept of the graph of each linear equation.
a. $y=3 x-4$
b. $y=6.5$
c. $-5 x-y=-2$

EXAMPLE 4 Using Slope-Intercept Form to Graph

Graph $2 x+y=2$. Identify the x-intercept.

