Write an equation of the line with the given slope and y-intercept.

1. slope: -3
y-intercept: -6
a. $y=-6 x+3$
b. $y=-3 m+6$
c. $y=-6 x-3$
d. $y=-3 x-6$

ANS: D REF: Algebra 1 Sec .4 .1
KEY: writing equations | slope | y-intercept | equation NOT: Example 1
Write an equation of the line in slope-intercept form.
2.

a. $y=x-5$
b. $y=-x-5$
c. $y=-x+5$
d. $y=x+5$

ANS: B REF: Algebra 1 Sec. 4.1
KEY: writing equations | linear equation in two variables | slope-intercept form | equation
NOT: Example 2
Write an equation of the line that passes through the given points.
3. $(-5,-1),(0,-1)$
a. $y=-5$
b. $y=\frac{2}{5} x+1$
c. $y=-1$
d. $y=\frac{5}{2} x+\frac{23}{2}$

ANS: C
REF: Algebra 1 Sec. 4.1
KEY: writing equation | linear equation in two variables | equation
NOT: Example 3
4. Write a linear function f with the values $f(0)=5$ and $f(-3)=6$.
a. $y=x+5$
b. $y=6 x+5$
c. $y=-\frac{1}{3} x+6$
d. $y=-\frac{1}{3} x+5$

ANS: D
REF: Algebra 1 Sec. 4.1
KEY: writing linear functions | linear function
NOT: Example 4
5. Write a linear function f with the values $f(0)=4$ and $f(1)=-4$.
a. $y=x-4$
b. $y=4 x-8$
c. $y=-8 x+4$
d. $y=-4 x+4$

ANS: C
REF: Algebra 1 Sec. 4.1
KEY: writing linear functions | linear function
NOT: Example 4

Write an equation in point-slope form of the line that passes through the given point and has the given slope.

6. $(-3,2) ; m=-3$
a. $y=-3 x$
b. $y-2=-3(x+3)$
c. $y=-3 x+7$
d. $y+2=-3(x-3)$

ANS: B REF: Algebra 1 Sec. 4.2
KEY: writing equations of lines using a slope and a point | point-slope form | writing equations equation NOT: Example 1
7. Write a linear function f with the values $f(-6)=10$ and $f(2)=10$.
a. $f(x)=10$
b. $f(x)=0$
c. $f(x)=-6 x+10$
d. $f(x)=x-10$

ANS: A REF: Algebra 1 Sec .4 .2
KEY: writing linear functions | linear function NOT: Example 3
8. Write an equation of the line that passes through the given point and is parallel to the given line.
$(4,5) ; y=-\frac{3}{2} x+3$
a. $y=-\frac{3}{2} x-1$
b. $y=\frac{3}{2} x+3$
c. $y=-\frac{3}{2} x+11$
d. $y=\frac{3}{2} x+11$

ANS: C REF: Algebra 1 Sec .4 .3
KEY: parallel lines | writing equations of parallel lines | equation | writing equations
NOT: Example 2
9. Write an equation of the line that passes through the given point and is perpendicular to the given line.
$(-6,-4) ; y=\frac{1}{3} x+1$
a. $y=-\frac{1}{3} x+1$
b. $y=\frac{1}{3} x-22$
c. $y=-3 x+14$
d. $y=-3 x-22$

ANS: D REF: Algebra 1 Sec. 4.3
KEY: perpendicular lines | writing equations | writing equations of perpendicular lines | equation NOT: Example 4

Tell whether x and y show a positive, a negative, or no correlation.
10.

a. positive
b. negative
c. no

ANS: B
REF: Algebra 1 Sec. 4.4
KEY: scatter plot | correlation | identifying correlations NOT: Example 2
11.

a. no
b. positive
c. negative

ANS: B
REF: Algebra 1 Sec. 4.4
KEY: scatter plot | correlation | identifying correlations
12.

a. no
b. positive
c. negative

ANS: A
REF: Algebra 1 Sec. 4.4
KEY: scatter plot | correlation | identifying correlations
NOT: Example 2
13. The table shows the ages and prices of used cars from an online site. Write an equation that models price as a function of age.

Age of car (in years), x	1	3	5	7	9	11	13
Price (in thousands of dollars), y	20.5	18.4	16.1	13.5	11.4	8.8	6

a. $y=1.2 x+22$
b. $y=-1.2 x+22$
c. $y=-1.2 x+20.5$
d. $y=-2 x+20.5$

ANS: B REF: Algebra 1 Sec. 4.4
KEY: application | line of best fit | finding lines of best fit | equation | writing equations | slope | y-intercept NOT: Example 3-1

Write an equation for the nth term of the arithmetic sequence. Then find a_{10}.
14. $-2,5,12,19, \ldots$
a. $\quad a_{n}=7 n+9 ; a_{10}=79$
b. $\quad a_{n}=7 n+9 ; a_{10}=54$
c. $a_{n}=7 n-9 ; a_{10}=61$
d. $a_{n}=7 n-9 ; a_{10}=68$

ANS: C REF: Algebra 1 Sec .4 .6
KEY: sequence | term of a sequence | arithmetic sequence | writing equations for arithmetic sequences NOT: Example 4
15. $13,9,5,1, \ldots$
a. $\quad a_{n}=-4 n-17 ; a_{10}=-57$
b. $\quad a_{n}=-4 n+17 ; a_{10}=-23$
c. $\quad a_{n}=-4 n-17 ; a_{10}=-19$
d. $a_{n}=-4 n+17 ; a_{10}=-27$

ANS: B REF: Algebra 1 Sec .4 .6
KEY: sequence | term of a sequence | arithmetic sequence | writing equations for arithmetic sequences NOT: Example 4

Graph the function. Describe the domain and range.
16. $y= \begin{cases}x-2, & \text { if } x<0 \\ 3 x, & \text { if } x \geq 0\end{cases}$
a. Domain: $x<-2, x \geq 0$

Range: all real numbers

b. Domain: $x<-2, x \geq 0$

Range: all real numbers

c. Domain: all real numbers

Range: $y<-2, y \geq 0$

d. Domain: all real numbers

Range: $y<-2, y \geq 0$

ANS: D
REF: Algebra 1 Sec. 4.7
KEY: piecewise function | graphing piecewise functions | domain | range of a function NOT: Example 2
17. $y= \begin{cases}-2 x+1, & \text { if } x \leq-2 \\ 1, & \text { if }-2<x<1 \\ 2 x, & \text { if } x \geq 1\end{cases}$

ANS: D
REF: Algebra 1 Sec. 4.7
KEY: piecewise function | graphing piecewise functions | domain | range of a function NOT: Example 2

Write an equation of the line in slope-intercept form.
18.

ANS:
$y=-\frac{4}{3} x-2$
REF: Ch 4 Quiz NOT: Exercise 1
Write an equation in point-slope form of the line that passes through the given points.
19. $(4,1),(-2,7)$

ANS:
$y-1=-1(x-4)$
REF: Ch 4 Quiz NOT: Exercise 4
20. The table shows the distance covered by a spaceship in outer space. Can the situation be modeled by a linear equation? Explain. If possible, write a linear model that represents the distance traveled as a function of time.

Time (seconds)	$\mathbf{1}$	4	7	10	13
Distance (miles)	5	20	35	50	65

ANS:
yes; The rate of change is constant; $y=5 x$

REF: Ch 4 Quiz NOT: Exercise 12

Tell whether a correlation is likely in the situation. Explain your reasoning.

21. the height of a person and the length of their stride

ANS:
yes; The taller you are, the longer your legs are, so your strides will be longer.

REF: Ch 4 Test A NOT: Exercise 23
22. the number of flat tires on your car and the number of pets you own

ANS:
no; There is no relationship between the number of flat tires on your car and the number of pets you own.

REF: Ch 4 Test A NOT: Exercise 24
23. the number of text messages sent daily and the number of meals eaten daily

ANS:
no; The amount of text messages a person sends daily does not affect their diet.

REF: Ch 4 Test A NOT: Exercise 25
24. the amount of gas in a car's tank and the number of miles driven

ANS:
yes; The number of gallons of gas in the tank decreases as more miles are driven.

REF: Ch 4 Test B NOT: Exercise 23
25. the height of a person and the length of the person's hair

ANS:
no; The height of a person has no relationship to the length of their hair.

REF: Ch 4 Test B NOT: Exercise 24
26. For a field trip, a bus company charges a flat fee plus an additional fee per student. For 25 students, the total cost is $\$ 132.50$. If there are 30 students, the total cost is $\$ 145.00$. Write an equation that represents the total cost y of the field trip for x students. What would the total cost be if 85 students went on the field trip?

ANS:
$y=2.5 x+70 ; \$ 282.5$

REF: Algebra 1 Sec. 4.1
KEY: application | linear model | writing equations
NOT: Example 5-2
27. The high school Pep Club is ordering T-shirts for student members. The table below shows the cost y (in dollars) of ordering different numbers x of T-shirts.

Number of T-shirts	30	37	44	51	58
Cost (in dollars)	297	360	423	486	549

a. Can the situation be modeled by a linear equation? How do you know?
b. Write a linear model for this data if possible.
c. According to the model, how much will it cost to purchase 72 T -shirts?

ANS:
a. Yes. The rate of change for consecutive data pairs is constant; therefore, the relationship is linear.
b. $y=9 x+27$
c. $\$ 675.00$

REF: Algebra 1 Sec. 4.2
KEY: application | linear model | linear function | writing equations
NOT: Example 4-3
Use residuals to determine whether the model is a good fit for the data in the table. Explain.
28. $y=2 x+1$

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}	-11	-8	-5	-4	-1	-1	2	6	5

ANS:
no; The residual points are not evenly dispersed about the horizontal axis.
REF: Algebra 1 Sec. $4.5 \quad$ KEY: residual | using residuals | line of fit | linear model
NOT: Example 1
Tell whether a correlation is likely in this situation. If so, tell whether there is a causal relationship. Explain your reasoning.
29. the age of your parents and the length of your hair

ANS:
no; The age of your parents and the length of your hair are not related.
REF: Algebra 1 Sec. 4.5
KEY: application | causation | distinguishing between correlation and causation | correlation NOT: Example 5
30. the amount of time spent studying and the score on a test

ANS:
yes; yes; Studying more for a test results in higher scores.
REF: Algebra 1 Sec. 4.5
KEY: application | causation | distinguishing between correlation and causation | correlation
NOT: Example 5
31. a student's grade point average and their future income

ANS:
yes; no; A student with a high GPA might be more likely to earn more money in the future, but having a higher GPA does not cause an increase in future income.

REF: Algebra 1 Sec. 4.5
KEY: application | causation | distinguishing between correlation and causation | correlation NOT: Example 5
32. The scatter plot shows the number of hours worked x and the earnings y (in dollars) of a food server.

a. About how many hours must the server work to earn $\$ 35$?
b. About how much did the server earn for 5 hours of work?
c. What tends to happen to the earnings as the number of hours worked increases?

ANS:
a. 2.5 h
b. $\$ 75$
c. As the number of hours worked increases, the earnings increases.

REF: Algebra 1 Sec. 4.4
KEY: scatter plot | interpreting scatter plots
NOT: Example 1
33. Your friend has one week to pay the $\$ 26$ fine for a parking ticket. After that, the fine increases $\$ 7$ each week.

Week	1	2	3	4
Fine	$\$ 26$	$\$ 33$	$\$ 40$	$\$ 47$

a. Write a function that represents the arithmetic sequence.
b. Graph the function.
c. Your friend paid $\$ 75$. How many weeks did it take your friend to pay the ticket?

ANS:
a. $f(n)=7 n+19$

c. It took 8 weeks.

REF: Algebra 1 Sec. 4.6
KEY: application | sequence | arithmetic sequence | graphing arithmetic sequences | writing arithmetic sequences as functions

NOT: Example 5-1
34. A car rental company charges by the day to rent a car in addition to requiring each customer to purchase an insurance policy for a flat fee of $\$ 50.00$.
a. Write and graph a step function that represents the relationship between the number x of days and the total cost y (in dollars) of renting a car for 5 days at a rate of $\$ 25.00$ per day.
b. If the rental company offered a rate of $\$ 195.00$ per week, would it be a better deal to use that rate if you were renting a car for a week? Explain.

ANS:
a.
$f(x)= \begin{cases}75, & \text { if } 0<x \leq 1 \\ 100, & \text { if } 1<x \leq 2 \\ 125, & \text { if } 2<x \leq 3 \\ 150, & \text { if } 3<x \leq 4 \\ 175, & \text { if } 4<x \leq 5\end{cases}$

b. No. The total cost for paying by the day for one week is $\$ 225.00$ and the total cost for paying the weekly rate for one week is $\$ 245.00$.

REF: Algebra 1 Sec. 4.7
KEY: application | step function | writing step functions | graphing step functions
NOT: Example 4-3

