5.6 Graphing Linear Inequalities in Two Variables

Essential Question:

\qquad

A \qquad in two variables, x and y, can be written as
where a, b, and c are real numbers. A \qquad of a linear inequality in two variables is an ordered pair (x, y) that makes the inequality \qquad .

EXAMPLE 1 Checking Solutions

Tell whether the ordered pair is a solution of the inequality.
a. $2 x+y<-3 ;(-1,9)$
b. $x-3 y \geq 8$; $(2,-2)$

Graphing Linear Inequalities in Two Variables

The graph of a linear inequality in two variables shows \qquad the \qquad of the inequality in a coordinate plane.

All solutions of $y<2 x$ lie on one side of the boundary line $y=2 x$.

The boundary line divides the coordinate plane into two half-planes. The shaded half-plane is the graph of $y<2 x$.

G) Core Concept

Graphing a Linear Inequality in Two Variables

Step 1 Graph the boundary line for the inequality. Use a dashed line for $<$ or $>$. Use a solid line for \leq or \geq.

Step 2 Test a point that is not on the boundary line to determine whether it is a solution of the inequality.
Step 3 When the test point is a solution, shade the half-plane that contains the point. When the test point is nor a solution, shade the half-plane that does not contain the point.

EXAMPLE 2 Graphing a Linear Inequality in One Variable

Graph $y \leq 2$ in a coordinate plane.

EXAMPLE 3 Graphing a Linear Inequality in Two Variables Graph $-x+2 y>2$ in a coordinate plane.

Solving Real-Life Problems

EXAMPLE 4 Modeling with Mathematics

You can spend at most $\$ 10$ on grapes and apples for a fruit salad. Grapes cost $\$ 2.50$ per pound, and apples cost $\$ 1$ per pound. Write and graph an inequality that represents the amounts of grapes and apples you can buy. Identify and interpret two solutions of the inequality.

