\qquad Date:

5.3 Solving Systems of Linear Equations By Elimination

Essential Question:

\qquad

Step 1: \qquad if necessary, one or both equations by a constant so that at least one pair of like terms has the \qquad or \qquad coefficients.

Step 2: \qquad or \qquad the equations to eliminate one of the \qquad .

Step 3: \qquad the resulting \qquad .

Step 4: \qquad the value from Step 3 into one of the \qquad equations to
\qquad for the other variable.

EXAMPLE 1

Solving a System of Linear Equations by Elimination

Solve the system of linear equations by elimination.

$$
\begin{array}{ll}
3 x+2 y=4 & \text { Equation 1 } \\
3 x-2 y=-4 & \text { Equation 2 }
\end{array}
$$

EXAMPLE 2
 Solving a System of Linear Equations by Elimination

Solve the system of linear equations by elimination.

$$
\begin{array}{ll}
-10 x+3 y=1 & \text { Equation 1 } \\
-5 x-6 y=23 & \text { Equation 2 }
\end{array}
$$

Example 2b

$5 x+8 y=1$
$-2 x+2=3 y$

Solving Real-Life Problems

EXAMPLE 3 Modeling with Mathematics

A business with two locations buys seven large delivery vans and five small delivery vans. Location A receives five large vans and two small vans for a total cost of $\$ 235,000$. Location B receives two large vans and three small vans for a total cost of $\$ 160,000$. What is the cost of each type of van?

