Name:

5.2 Solving Systems of Linear Equations By Substitution

Essential Question:

\qquad

Step 1: \qquad one of the equations for \qquad of the \qquad .

Step 2: \qquad the expression from Step 1 \qquad the other equation and \qquad
for the \qquad .

Step 3: \qquad the value from Step 2 into one of the \qquad equations and
\qquad .

In the following equations, circle or highlight the variable that would be the best choice to isolate (get alone).
$3 x+y=5$
$-2 y+x=-7$
$-5 x+10 y=5$

EXAMPLE 1
 Solving a System of Linear Equations by Substitution

Solve the system of linear equations by substitution.

$$
\begin{array}{ll}
y=-2 x-9 & \text { Equation } 1 \\
6 x-5 y=-19 & \text { Equation 2 }
\end{array}
$$

EXAMPLE 2
 Solving a System of Linear Equations by Substitution

Solve the system of linear equations by substitution.

$$
\begin{array}{ll}
-x+y=3 & \text { Equation 1 } \\
3 x+y=-1 & \text { Equation 2 }
\end{array}
$$

Solving Real-Life Problems

EXAMPLE 3 Modeling with Mathematics

A drama club earns $\$ 1040$ from a production. A total of 64 adult tickets and 132 student tickets are sold. An adult ticket costs twice as much as a student ticket. Write a system of linear equations that represents this situation. What is the price of each type of ticket?

