\qquad

4.6 Arithmetic Sequences

Essential Question:

\qquad
*A \qquad is an ordered list of \qquad . Each number in the sequence is called a
\qquad . Each term \qquad has a specific position \qquad in the sequence.

*In an \qquad sequence, the \qquad between each pair of consecutive terms is the same. This difference is called the \qquad difference. Each term is found by
\qquad the common difference to the previous \qquad .

*An \qquad is a series of \qquad that indicates an intentional omission of \qquad .

In mathematics, the notation means " \qquad
\qquad ." The ellipsis indicates that there are \qquad terms in the sequence that are not \qquad .

EXAMPLE 1 Extending an Arithmetic Sequence

Write the next three terms of the arithmetic sequence.

$$
-7,-14,-21,-28, \ldots
$$

Graphing Arithmetic Sequences

To graph a sequence, let a term's position number \qquad in the sequence be the \qquad value. The term
\qquad is the corresponding \qquad . Plot the ordered pairs \qquad .

EXAMPLE 2 Graphing an Arithmetic Sequence

Graph the arithmetic sequence $4,8,12,16, \ldots$. What do you notice?
MAKE SURE TO CREATE THE GRAPH

EXAMPLE 3 Identifying an Arithmetic Sequence from a Graph

Does the graph represent an arithmetic sequence? Explain.

Writing Arithmetic Sequences as Functions

Because consecutive terms of an arithmetic sequence have a common difference, the sequence has
a \qquad of \qquad So, the points represented by any arithmetic sequence lie on
a \qquad . You can use the first term and the common difference to write a linear function that
describes an arithmetic sequence. Let \qquad $=4$ and \qquad $=3$.

Position, \boldsymbol{n} | 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| \vdots |
| n |

Term, a_{n}
first term, a_{1}
second term, a_{2}
third term, a_{3}
fourth term, a_{4}
$\quad \vdots$
nth term, a_{n}
Written using $\boldsymbol{a}_{\mathbf{1}}$ and \boldsymbol{d}
a_{1}
$a_{1}+d$
$a_{1}+2 d$
$a_{1}+3 d$
\vdots
$a_{1}+(n-1) d$

[^0]
Equation for an Arithmetic Sequence

Let a_{n} be the nth term of an arithmetic sequence with first term a_{1} and common difference d. The nth term is given by

$$
a_{n}=a_{1}+(n-1) d .
$$

EXAMPLE 4 Finding the \boldsymbol{n} th Term of an Arithmetic Sequence

Write an equation for the nth term of the arithmetic sequence $14,11,8,5, \ldots$.
Then find a_{50}.
*You can rewrite the equation for an arithmetic sequence with the first term \qquad and the common
difference \qquad in \qquad by replacing \qquad with \qquad .

$$
f(n)=a_{1}+(n-1) d
$$

The domain of the function is the set of positive integers.

EXAMPLE 5 Writing Real-Life Functions

Online bidding for a purse increases by $\$ 5$ for each bid after the $\$ 60$ initial bid.

Bid number	1	2	3	4
Bid amount	$\$ 60$	$\$ 65$	$\$ 70$	$\$ 75$

a. Write a function that represents the arithmetic sequence.
b. Graph the function.
c. The winning bid is $\$ 105$. How many bids were there?

[^0]: Numbers

 4
 $4+3=7$
 $4+2(3)=10$
 $4+3(3)=13$

 $4+(n-1)(3)$

