Name:	

4.6 Arithmetic Sequences

Essential Question:

*A ______ is an ordered list of _____. Each number in the sequence is called a

_____. Each term ____ has a specific position ____ in the sequence.

*In an _____ sequence, the _____ between each pair of consecutive terms is

the same. This difference is called the ______ difference. Each term is found by

_____ the common difference to the previous _____.

*An _____ is a series of _____ that indicates an intentional omission of _____.

In mathematics, the notation means "_____ ____." The ellipsis indicates that there

are _____ terms in the sequence that are not _____.

EXAMPLE 1 Extending an Arithmetic Sequence

Write the next three terms of the arithmetic sequence.

$$-7, -14, -21, -28, \dots$$

Graphing Arithmetic Sequences

To graph a sequence, let a term's position number ___ in the sequence be the ___ value. The term

_____ is the corresponding _____. Plot the ordered pairs _____.

EXAMPLE 2

Graphing an Arithmetic Sequence

Graph the arithmetic sequence 4, 8, 12, 16, What do you notice?

MAKE SURE TO CREATE THE GRAPH

EXAMPLE 3

Identifying an Arithmetic Sequence from a Graph

Does the graph represent an arithmetic sequence? Explain.

Writing Arithmetic Sequences as Functions

Because consecutive terms of an arithmetic sequence have a common difference, the sequence has

a _____ of ____. So, the points represented by any arithmetic sequence lie on

a _____. You can use the first term and the common difference to write a linear function that

describes an arithmetic sequence. Let ____ = 4 and __=3.

Position, n	Term, a_n	Written using a_1 and d	Numbers
1	first term, a_1	a_1	4
2	second term, a_2	$a_1 + d$	4 + 3 = 7
3	third term, a_3	$a_1 + 2d$	4 + 2(3) = 10
4	fourth term, a_4	$a_1 + 3d$	4 + 3(3) = 13
÷	:	:	:
n	n th term, a_n	$a_1 + (n-1)d$	4 + (n-1)(3)

•

Equation for an Arithmetic Sequence

Let a_n be the *n*th term of an arithmetic sequence with first term a_1 and common difference d. The *n*th term is given by

$$a_n = a_1 + (n-1)d.$$

EXAMPLE 4 Finding the *n*th Term of an Arithmetic Sequence

Write an equation for the *n*th term of the arithmetic sequence 14, 11, 8, 5, Then find a_{50} .

*You can rewrite the equation for an arithmetic sequence with the first term ____ and the common difference _ in ____ by replacing ___ with ___. $f(n) = a_1 + (n-1)d$

The domain of the function is the set of positive integers.

EXAMPLE 5 Writing Real-Life Functions

Online bidding for a purse increases by \$5 for each bid after the \$60 initial bid.

Bid number	1	2	3	4
Bid amount	\$60	\$65	\$70	\$75

- a. Write a function that represents the arithmetic sequence.
- b. Graph the function.
- c. The winning bid is \$105. How many bids were there?

