\qquad
\qquad

4.5 Analyzing Lines of Fit

Essential Question:

\qquad
\qquad

One way to determine how well a line of fit \qquad a data set is to \qquad residuals.

A \qquad is the \qquad of the y-value of a data point and the corresponding y value found using the \qquad of fit. A residual can be \qquad , \qquad or
\qquad -.

A scatter plot of the residuals shows how well a model \qquad a data set. If the model is a good is a good fit, then the \qquad values of the residuals are relatively small, and the residuals points will be more or less \qquad dispersed about the \qquad axis. If the model is
\qquad a good fit, then the residuals points will form some type of \qquad that suggests the data is not \qquad . Wildly scattered residual points suggest that the data might have no
\qquad -

EXAMPLE 1 Using Residuals

In Example 3 in Section 4.4, the equation $y=-2 x+20$ models the data in the table shown. Is the model a good fit?

Week, \boldsymbol{x}	Sales (millions), \boldsymbol{y}
1	$\$ 19$
2	$\$ 15$
3	$\$ 13$
4	$\$ 11$
5	$\$ 10$
6	$\$ 8$
7	$\$ 7$
8	$\$ 5$

Step 1: \qquad

Step 2: \qquad

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{y}-Value from model	Residual
1	19	18	$19-18=1$
2	15	16	$15-16=-1$
3	13	14	$13-14=-1$
4	11	12	$11-12=-1$
5	10	10	$10-10=0$
6	8	8	$8-8=0$
7	7	6	$7-6=1$
8	5	4	$5-4=1$

EXAMPLE 2 Using Residuals

The table shows the ages x and salaries y (in thousands of dollars) of eight employees at a company. The equation $y=0.2 x+38$ models the data. Is the model a good fit?

Age, \boldsymbol{x}	35	37	41	43	45	47	53	55
Salary, \boldsymbol{y}	42	44	47	50	52	51	49	45

SOLUTION

Step 1 Calculate the residuals. Organize your results in a table.
Step 2 Use the points (x, residual) to make a scatter plot.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{y}-Value from model	Residual
35	42	45.0	$42-45.0=-3.0$
37	44	45.4	$44-45.4=-1.4$
41	47	46.2	$47-46.2=0.8$
43	50	46.6	$50-46.6=3.4$
45	52	47.0	$52-47.0=5.0$
47	51	47.4	$51-47.4=3.6$
53	49	48.6	$49-48.6=0.4$
55	45	49.0	$45-49.0=-4.0$

Finding Lines of Best Fit

Graphing calculators use a method called \qquad to find a precise line of fit called the line of best fit. This line models a \qquad of \qquad . A calculator often givens a value \qquad _, called the \qquad . This value tells whether the correlation is \qquad or \qquad and how closely the \qquad models the data. Values of r ange from
\qquad to \qquad . When r is \qquad to 1 or -1 , there is a \qquad correlation between the
\qquad . As r, gets closer to \qquad the correlation becomes \qquad .

Draw the scale that is shown in the video in the space below:

