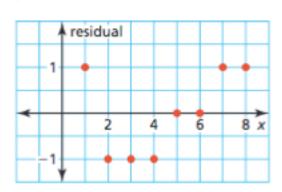

Name:	Date	e:	· · · · · · · · · · · · · · · · · · ·			
4.5 Analyzing Lines of Fit						
Essential Question:						
One way to determine how well a lir	ne of fit	a data set is to	residuals			
A is the	of the y-value of a	a data point and the corr	esponding y-			
value found using the of t	fit. A residual can be		or			
·						
A scatter plot of the residuals shows	how well a model	a data set. If the mo	odel is a good			
is a good fit, then the	values of the residuals	are relatively small, and	the residuals			
points will be more or less	dispersed about the	axis. If t	he model is			
a good fit, then the residual	ls points will form some	type of th	at suggests the			
data is not Wildly scatt	ered residual points sug	ggest that the data migh	t have no			

EXAMPLE 1 Using Residuals


In Example 3 in Section 4.4, the equation y = -2x + 20 models the data in the table shown. Is the model a good fit?

Week, x	Sales (millions), y
1	\$19
2	\$15
3	\$13
4	\$11
5	\$10
6	\$8
7	\$7
8	\$5

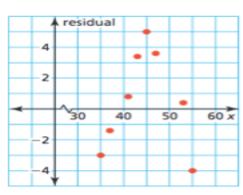
Step 1: _____

Step 2: _____

x	у	y-Value from model	Residual
1	19	18	19 - 18 = 1
2	15	16	15 - 16 = -1
3	13	14	13 - 14 = -1
4	11	12	11 - 12 = -1
5	10	10	10 - 10 = 0
6	8	8	8 - 8 = 0
7	7	6	7 - 6 = 1
8	5	4	5 - 4 = 1

EXAMPLE 2 Using Residuals

The table shows the ages x and salaries y (in thousands of dollars) of eight employees at a company. The equation y = 0.2x + 38 models the data. Is the model a good fit?


Age, x	35	37	41	43	45	47	53	55
Salary, y	42	44	47	50	52	51	49	45

SOLUTION

Step 1 Calculate the residuals. Organize your results in a table.

Step 2 Use the points (x, residual) to make a scatter plot.

×	У	y-Value from model	Residual
35	42	45.0	42 - 45.0 = -3.0
37	44	45.4	44 - 45.4 = -1.4
41	47	46.2	47 - 46.2 = 0.8
43	50	46.6	50 - 46.6 = 3.4
45	52	47.0	52 - 47.0 = 5.0
47	51	47.4	51 - 47.4 = 3.6
53	49	48.6	49 - 48.6 = 0.4
55	45	49.0	45 - 49.0 = -4.0

Finding Lines of Best Fit

Graphing calculators use a method called ______ to find a precise line of fit called the line of best fit. This line models a _____ of ____. A calculator often givens a value ___, called the ______. This value tells whether the correlation is _____ or _____ and how closely the _____ models the data. Values of r ange from ____to ____. When r is _____ to 1 or -1, there is a _____ correlation between the _____. As r, gets closer to _____, the correlation becomes ______.

Draw the scale that is shown in the video in the space below: