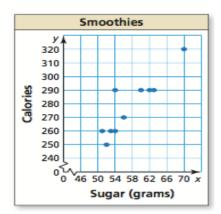
Name:			
ivanie.			

4.4 Scatter Plots and Lines of Fit

Essential Question:

A ______ plot is a _____ that shows the _____ between two data sets.


The two data sets are graphed as _____ pairs in a coordinate plane. Scatter plots can show

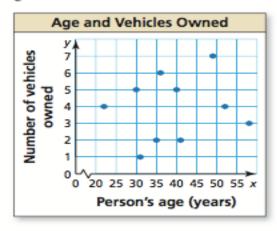
_____ in the _____.

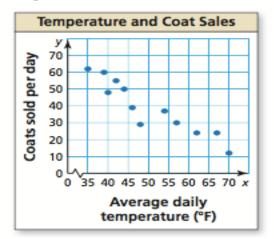
EXAMPLE 1 Interpreting a Scatter Plot

The scatter plot shows the amounts x (in grams) of sugar and the numbers y of calories in 10 smoothies.

- a. How many calories are in the smoothie that contains 56 grams of sugar?
- b. How many grams of sugar are in the smoothie that contains 320 calories?
- c. What tends to happen to the number of calories as the number of grams of sugar increases?

A _____ is a ____ between data sets. You can use a scatter plot to


describe the correlation between the data.


In the space below, draw an example of each of the types of correlations as shown in the video:

EXAMPLE 2 Identifying Correlations

Tell whether the data show a positive, a negative, or no correlation.

- a. age and vehicles owned
- b. temperature and coat sales at a store

Using Lines of Fit to Model Data

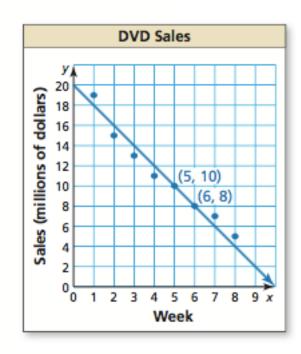
When data shows a positive or negative correlation, you can model the ______ in the date using a _____ of ____. A line of fit is a _____ drawn on a scatter plot that is _____ to most of the data points.

Step 1: Make a _____ plot of the data.

Step 2: Decide whether the data can be ______ by a _____.

Step 3: ______ a line that appears to fit the data _____. There should be approximetely as

many points _____ it.


Step 4: Write an _____ using two points on the ____. The points do _____ have

to represent actual data pairs but they _____ lie on the line of _____.

EXAMPLE 3 Finding a Line of Fit

The table shows the weekly sales of a DVD and the number of weeks since its release. Write an equation that models the DVD sales as a function of the number of weeks since its release. Interpret the slope and y-intercept of the line of fit.

Week, x	1	2	3	4	5	6	7	8
Sales (millions), y	\$19	\$15	\$13	\$11	\$10	\$8	\$7	\$5

