\qquad

3.4 Graphing Linear Equations in Standard Form

Essential Question:

\qquad

The standard form of a \qquad equation is \qquad where A, B and C are real
numbers and A and B are not both \qquad .

Consider what happens when $A=0$ or when $B=0$. When $A=0$, the equation becomes
\qquad or \qquad . Because \qquad is a constant, you can write
\qquad Similarly, when $B=0$, the equation becomes $A x=C$, or \qquad and you can
write $x=a$.
G Core Concept

Horizontal and Vertical Lines

The graph of $y=b$ is a horizontal line. The line passes through the point $(0, b)$.

The graph of $x=a$ is a vertical line. The line passes through the point $(a, 0)$.

EXAMPLE 1 Horizontal and Vertical Lines

Graph (a) $y=4$ and (b) $x=-2$.

Extra Examples

*graph $y=-1.5$

Using Intercepts to Graph Linear Equations

You can use the fact that two points determine a line to graph a linear equation. Two convenient points are the points where the graph crosses the axes.

G) Core Concept

Using Intercepts to Graph Equations

The x-intercept of a graph is the x-coordinate of a point where the graph crosses the x-axis. It occurs when $y=0$.

The y-intercept of a graph is the y-coordinate of a point where the graph crosses the y-axis. It occurs when $x=0$.

To graph the linear equation $A x+B y=C$, find the intercepts and draw the line that passes through the two intercepts.

- To find the x-intercept, let $y=0$ and solve for x.
- To find the y-intercept, let $x=0$ and solve for y.

EXAMPLE 2 Using Intercepts to Graph a Linear Equation

Use intercepts to graph the equation $3 x+4 y=12$.

