\qquad
\qquad

3.2 Linear Functions

Essential Question:

\qquad

Remember a function is a relation where every \qquad is pared with one \qquad .

A linear equation in two variables, x and y, is an equation that can be written in the form
\qquad where m and b are \qquad . The graph of a linear equation is a
\qquad . Likewise, a linear function is a function whose graph is a \qquad line. A linear function has a \qquad rate of \qquad and can be represented by a linear equation in
\qquad variables. A \qquad function does \qquad have a constant rate of change so its graph is \qquad a line.

EXAMPLE 1 Identifying Linear Functions Using Graphs

Does the graph represent a linear or nonlinear function? Explain.
a.

b.

EXAMPLE 2 Identifying Linear Functions Using Tables

Does the table represent a linear or nonlinear function? Explain.

a. | x | 3 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| y | 36 | 30 | 24 | 18 |

b. | x | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| y | 2 | 9 | 20 | 35 |

EXAMPLE 3 Identifying Linear Functions Using Equations

Which of the following equations represent linear functions? Explain.

$$
y=3.8, y=\sqrt{x}, y=3^{x}, y=\frac{2}{x}, y=6(x-1), \text { and } x^{2}-y=0
$$

Copy down the concept summary in the space below:

